
Nuclear Energy

Nuclear Energy Advanced Modeling and Simulation

Alex R. Larzelere NE-54 Office of Nuclear Energy U.S. Department of Energy

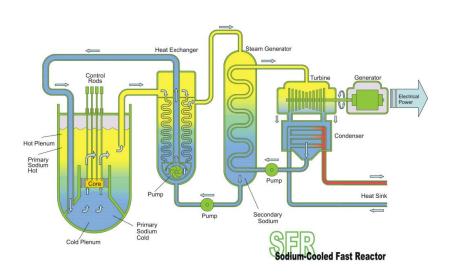
NEAMS Organization Mirrors NNSA ASC Program

NEAMS Program Overview

Nuclear Energy

Integrated Performance and Safety Codes (IPSC)

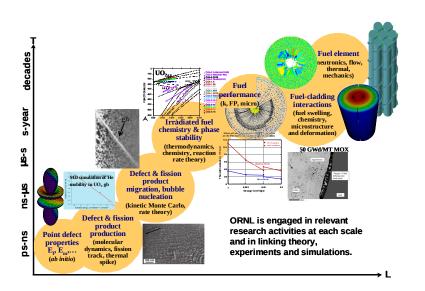
- Continuum level codes that will predict the performance and safety of nuclear energy systems technologies
- Attributes include 3D, science based physics, high resolution, integrated systems
- Large code teams (~25 people)
- Single "center of gravity"
- Long-term commitment (~10 years)
- Codes "born" with verification, validation and uncertainty quantification
- Using interoperability frameworks and modern software development techniques and tools


Program Support Elements

- Develop crosscutting (i.e. more than one IPSC) required capabilities
 - Fundamental Methods and Models
 - Verification, Validation and Uncertainty Quantification
 - Interoperability frameworks
 - Enabling Computational Technologies
- Provide a single NEAMS point of contact for crosscutting requirements (e.g. experimental data, computer technologies)
- Smaller, more diverse teams to include laboratories, universities and industries.
- Shorter timelines

Reactor IPSC

Nuclear Energy


Scope

- Predict performance and safety of fast reactors over 40 – 60 year lifetime
- Initial focus on reactor core
- As code progresses will extend to additional systems
- Many underlying physical processes (e.g. thermodynamics, neutronics) extensible to other reactor types (gas-cooled, light water)

Nuclear Fuels IPSC

Nuclear Energy

Scope

- Predict performance of fast reactor fuels over 18 to 24 month lifetime in core
- Develop suite of modeling tools to predict microscale behaviors and couple them through the mezzo scale to the continuum
- Develop with flexibility to extend to nuclear fuels for other reactor types (gas, light water)
- Fuel performance modeling is inherently multi-scale & multiphysics
- Coupling techniques not well understood
- V&V, UQ of coupled simulations also not well understood